翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

normal modal logic : ウィキペディア英語版
normal modal logic

In logic, a normal modal logic is a set ''L'' of modal formulas such that ''L'' contains:
* All propositional tautologies;
* All instances of the Kripke schema: \Box(A\to B)\to(\Box A\to\Box B)
and it is closed under:
* Detachment rule (Modus Ponens): A\to B, A \vdash B;
* Necessitation rule: \vdash A implies \vdash\Box A.
The smallest logic satisfying the above conditions is called K. Most modal logics commonly used nowadays (in terms of having philosophical motivations), e.g. C. I. Lewis's S4 and S5, are extensions of K. However a number of deontic and epistemic logics, for example, are non-normal, often because they give up the Kripke schema.
== Common normal modal logics ==

The following table lists several common normal modal systems.
The notation refers to the table at Kripke semantics § Common modal axiom schemata. Frame conditions for some of the systems were simplified: the logics are ''complete'' with respect to the frame classes given in the table, but they may ''correspond'' to a larger class of frames.



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「normal modal logic」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.